1,245 research outputs found

    Several approaches for optical data storage in thin organic films

    Get PDF
    Date du colloque : 12/2012International audienc

    Covering Problems for Partial Words and for Indeterminate Strings

    Full text link
    We consider the problem of computing a shortest solid cover of an indeterminate string. An indeterminate string may contain non-solid symbols, each of which specifies a subset of the alphabet that could be present at the corresponding position. We also consider covering partial words, which are a special case of indeterminate strings where each non-solid symbol is a don't care symbol. We prove that indeterminate string covering problem and partial word covering problem are NP-complete for binary alphabet and show that both problems are fixed-parameter tractable with respect to kk, the number of non-solid symbols. For the indeterminate string covering problem we obtain a 2O(klogk)+nkO(1)2^{O(k \log k)} + n k^{O(1)}-time algorithm. For the partial word covering problem we obtain a 2O(klogk)+nkO(1)2^{O(\sqrt{k}\log k)} + nk^{O(1)}-time algorithm. We prove that, unless the Exponential Time Hypothesis is false, no 2o(k)nO(1)2^{o(\sqrt{k})} n^{O(1)}-time solution exists for either problem, which shows that our algorithm for this case is close to optimal. We also present an algorithm for both problems which is feasible in practice.Comment: full version (simplified and corrected); preliminary version appeared at ISAAC 2014; 14 pages, 4 figure

    Functional microRNA high throughput screening reveals miR-9 as a central regulator of liver oncogenesis by affecting the PPARA-CDH1 pathway

    Get PDF
    Background: Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths, reflecting the aggressiveness of this type of cancer and the absence of effective therapeutic regimens. MicroRNAs have been involved in the pathogenesis of different types of cancers, including liver cancer. Our aim was to identify microRNAs that have both functional and clinical relevance in HCC and examine their downstream signaling effectors. Methods: MicroRNA and gene expression levels were measured by quantitative real-time PCR in HCC tumors and controls. A TargetScan algorithm was used to identify miR-9 downstream direct targets. Results: A high-throughput screen of the human microRNAome revealed 28 microRNAs as regulators of liver cancer cell invasiveness. MiR-9, miR-21 and miR-224 were the top inducers of HCC invasiveness and also their expression was increased in HCC relative to control liver tissues. Integration of the microRNA screen and expression data revealed miR-9 as the top microRNA, having both functional and clinical significance. MiR-9 levels correlated with HCC tumor stage and miR-9 overexpression induced SNU-449 and HepG2 cell growth, invasiveness and their ability to form colonies in soft agar. Bioinformatics and 3’UTR luciferase analyses identified E-cadherin (CDH1) and peroxisome proliferator-activated receptor alpha (PPARA) as direct downstream effectors of miR-9 activity. Inhibition of PPARA suppressed CDH1 mRNA levels, suggesting that miR-9 regulates CDH1 expression directly through binding in its 3’UTR and indirectly through PPARA. On the other hand, miR-9 inhibition of overexpression suppressed HCC tumorigenicity and invasiveness. PPARA and CDH1 mRNA levels were decreased in HCC relative to controls and were inversely correlated with miR-9 levels. Conclusions: Taken together, this study revealed the involvement of the miR-9/PPARA/CDH1 signaling pathway in HCC oncogenesis

    Reversible recording medium based on optical storage of information, method of reversible recording on such a medium.

    Get PDF
    A reversible recording medium based on optical storage of at least one item ofinformation within a support material, includes at least one layer of support material having: base molecules able to take, in a local zone, a first collective state of molecules able to generate a first signal of second harmonic characteristic of this first collective state of molecules when excited by electromagnetic reading radiation; the base molecules having the first collective state of molecules able to transform, at least in part, into transformed molecules so as to pass to a second collective state of molecules when excited by electromagnetic writing radiation, the molecules having the second collective state of molecules able to generate a second signal of second harmonic characteristic of this second collective state of molecules when excited by the electromagnetic reading radiation. The molecules exhibit a molecular structure based on a coumarin skeleton of Formula (I)

    Reversible Two-Photon Optical Data Storage in Coumarin-Based Copolymers

    Get PDF
    A functionalized polymer film allowing for a complete and straightforward second-harmonic generation (SHG)-assisted high-contrast writing?reading?erasing?writing sequence is proposed. The whole process is supported by the reversible photoinduced dimerization of a coumarin chromophore and enables efficient optical data storage that can be detected only by SHG imaging

    Prediction of dynamic strains on a monopile offshore wind turbine using virtual sensors

    Get PDF
    The monitoring of the condition of the offshore wind turbine during its operational states offers the possibility of performing accurate assessments of the remaining life-time as well as supporting maintenance decisions during its entire life. The efficacy of structural monitoring in the case of the offshore wind turbine, though, is undermined by the practical limitations connected to the measurement system in terms of cost, weight and feasibility of sensor mounting (e.g. at muddline level 30m below the water level). This limitation is overcome by reconstructing the full-field response of the structure based on the limited number of measured accelerations and a calibrated Finite Element Model of the system. A modal decomposition and expansion approach is used for reconstructing the responses at all degrees of freedom of the finite element model. The paper will demonstrate the possibility to predict dynamic strains from acceleration measurements based on the aforementioned methodology. These virtual dynamic strains will then be evaluated and validated based on actual strain measurements obtained from a monitoring campaign on an offshore Vestas V90 3 MW wind turbine on a monopile foundation
    corecore